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Linear System Stability via Liapunov’s
Direct Method and the Square Integral

LEE ROSENTHAL*
Hofstra University, Hempstead, N.Y.

Introduction

N application of Liapunov’s second method to auto-
nomous systems desecribed by linear differential equa-
tions of the form

o diyt)
izjoai =0 1)

or by linear difference equations of the form

n
Z%)aiy(m—i—i) =0 (m=...-1,01_..) (2
i=
results in a set of necessary and sufficient conditions for
asymptotic stability in the large.»? These conditions must
be equivalent, respectively, to the Routh stability criterion and
the analogous criterion for discrete time systems, referred to
as the table form eriterion.?—* These equivalences have been
shown by a number of authors.®—11

In this paper, the equivalence is established for both con-
tinuous and discrete time systems in completely parallel de-
velopments. This is accomplished by deriving and proving
the stability criteria directly from appropriate Liapunov
functions obtained in a very natural way.

The derivations begin with the square integral and summa-
tion defined, respectively, as .

v = [y

for continuous time systems and by
V=22 k)
k=m

s«rete time systems. . The convolution integrals from
wansform theory along with residues are used to express the
square integral and summation as quadratic forms in the state
variables

V(x) = $x"BQ.Bx.
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These forms are shown to be Liapunov functions for the sys-
tems.

The Routh criterion and the Routh-type criterion are then
derived and proven to be necessary and sufficient conditions
for the respective quadratic forms to be Liapunov functions
and, therefore, for the systems to be asymptotically stable in
the large.

Continuous Time Systems

A. Derivation of the Liapunov function
Consider the phase variable representation
x() = Ax(®), y(&) = @) 3

of a system governed by the linear, constant coefficient dif-
ferential equation given in Eq. (1).

Assume that the system is asymptotically stable in the
large (ASL). Then, the square integral V defined by

V= [ s

exists and can be evaluated using the convolution integral of
the Laplace transform and residue theory (Ref. 12, Ref. 13,
pp. 10-15) as the quadratic form

V(x) = 1x"BQ.Bx (4)
where (for n odd)
ay Qo R (479
ds dg A 0
B = ,
a, 0 0
M 0 N, Nt |
0 ~N, 0 0
Nz 0 N3 N("+3)/2
Q. = . . (5)
Nasnie 0 Nagnre ... N, |

and the set of factors & ; is the solution of the set of equations

@y Qs ... Ay O ... O N, 0 ]
0 a ... Awee A ... O N, 0
0 Ay ... Qp—3 Ap- 0 N3 0
= . (6)
6 0 ... a a ... a"._l N" 1/a,

It is now shown that V(x) is a Liapunov function for the
system of Eq. (1). The integrand (r)? is non-negative. If
x = 0at time ¢, it can be seen from Eq. (3) that 2; and its first
n — 1 derivatives are zero at time ¢, and consequently that
2; = 0 in the interval [t,»]. Therefore, V = 0. Also, if
V = 0, then z; = 0 in that interval and x = 0. It follows
that V is positive definite and so is V(%) as given in Eq. (4).

The derivative of ¥V with respect to time given by

V = d/dt [ L waZ(T)dT] — —z2() )

is negative semidefinite. Also, from the above, V is not
identically zero anywhere other thanx = 0.

Using the linearity of the system with the above, it is seen
that V(x) is a Liapunov function for the system if it is ASL.
Applying Liapunov’s theorem, it is concluded that the system
is ASL if and only if ¥V (x) is a Liapunov function.
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B. Derivation and proof of the Routh criterion

The Routh stability eriterion is now derived and proven
directly from the above properties of V(x) to be a necessary
and sufficient condition for ASL for the system of Eq. (3).

Necessity

If V(x) is a Liapunov function, then it must be positive
definite. Since a, # 0, the matrix B is nonsingular and it
follows, therefore, that Q, must be a positive definite matrix.

An iterative reduction procedure for the matrix Q, and the
set of Eqgs. (6) produces the following set of relations between
the principle minors of Q. (Ref. 13, pp. 30-37).

1

Qi = — s Qu—ial (=0,1,...,n=1) (8
n—1 N—1—.
where
» 1 PIRCS VPN EES)
Gpi1 =

R A AR A
and (17;(0) = {3

The matrix Q, will be positive definite by Sylvester’s cri-
terion if and only if

From Egs. (8) and (10), the following set of inequalities must
hold

Aoy > 0, An1@as® > 0, .., ;7DD > 0
These are equivalent to the requirement that all of the terms

any an—l, an—Z(D, ey a/O(nﬁl)

have the same sign. Referring to Eq. (9), these terms are
recognized as the Routh coefficients. Since the above re-
quirement is a necessary condition that V(x) be a Liapunov
function, the Routh criterion is a necessary condition for ASL
of the given system.

Sufficiency

It follows immediately from the above that if the Routh
criterion is satisfied, then V(x) is positive definite. Differ-
entiating V(x) with respect to time and substituting the
system equation gives

V(x) = $x7[A"BQ.B | BQ,BAlx (11)
Using the easily verified relationship
BA = A’B
V(x) can be shown, with some matrix manipulation, to be
VE) = —2:() (12)

which is identical to Eq. (7).

Therefore, if the Routh criterion is satisfied, V(x) as given
in Eq. (4) is a Liapunov function.

This result in conjunction with that under the previous
subheading completes the derivation of the Routh criterion
and the proof that it is a necessary and sufficient condition
for the asymptotic stability in the large of the continuous
time system of Eq. (1).

Discrete Time Systems

The derivation and proof of the analogous criterion for the
discrete time case (called the table form) is completely parallel
to the continuous time case. Therefore, only an outline of the
results will be given (Ref. 13, pp. 5-9, 21-29).
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A. Derivation of the Liapunov function
The phase variable representation of the difference equation
givenin Eq. (2) is
x(k + 1) = Ax(k), y(k) = au(k) (13)

The square summation

o

Vo= 2 @ik

k=m

can be evaluated as V(x) = x*BQ,Bx, where B is given in
Eq. (5), Q. is given by

N, N. ... N,
N2 Nl Nn——l
0. =] - .
No N ... N

and the factors N; satisfy a set of equations analogous to Eq.

(6).
B. Derivation and proof of the Routh-type criterion

Necessity

The matrix Q. must be positive definite. The analogous
sequence for the prineiple minors of Q. is

20D . @

Q| = pyeEy (i=01,...,n—1)

Qrii]

where

] i QpirriD
') =

G it1G™D @eli—D =142, ..,n (14
The conditions that quarantee that Q. is positive definite
are

ap? < 0, a® > 0,0, >0, ..., 0™ >0

Referring to Eq. (14), this set of inequalities is recognized
as the table form stability eriterion and had been shown to be
a necessary condition for ASL (Ref. 4, pp. 97-98).

Sufficiency

If the table form criterion is satisfied, then V(x) is positive
definite. The forward difference AV (x) can be shown to be
AV(x) = —u?, which is negative definite, with the result that
the table form criterion is sufficient to quarantee that V(x) is a
Liapunov funetion.

Therefore, the table form criterion is a necessary and suffi-
cient condition for asymptotic stability in the large of the
discrete time system of Eq. (2).

Conclusions

New Liapunov functions for the general nth order, auto-
nomous, linear, continuous, and diserete time systems have
been derived in a very natural way from the total square inte-
gral and summation.

The Routh and Routh-type stability criteria have then
been derived and proven in a new way by completely parallel
developments from the properties of these Liapunov fune-
tions.
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On the Singularity of Influence
Coeflicients of the Externally
Pressurized Spherical Shells

Tarsuzo Koga*
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1. Introduction

HE influence coefficients of pressurized spherical shells

have been obtained by W. Nachbar,! G. B. Cline? and by
D. Bushnell.? The numerical results for the externally pres-
surized spherical shells calculated by Bushnell show that the
influence coefficients have singularity near one-half the classi-
cal buckling pressure, whereas the stiffness coefficients behave
regular and nonzero. This indicates that the shell becomes
softer as the external pressure increases and it cannot carry
any load when the pressure reaches the value corresponding
to the singularity. A question may then arise; why are the
stiffness coefficients not zero? It is the intention of the pres-
ent Note to clarify the question. It turns out that the
singularity corresponds to the buckling at the edge of conical
shells whose edge slides and rotates freely on the constraining
surface of the conical shape. The conclusion may provide a
supplementary explanation to the numerical result obtained
recently by Baruch, Harari and Singer.*

2. Imfluence Coeflicients

The basic nonlinear equations governing axisymmetric de-
formations of elastic thin shells of revolution have been
formulated by E. Reissner.® The dependent variables may

Fig. 1 Boundary condition

He= M¢e = 0.
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be represented as a result of the superposition of quantities
belonging to the state of membrane stress and to that of
bending stress. The equations are linearized with respect to
the quantities belonging to the state of bending—taking the
effect of the membrane stresses into account. Solution of the
linearized equations yields the following expressions for the
transverse shear resultant @, the change of meridian tangent
B, the horizontal component of stress resultant H, the merid-
ional moment M, and for the horizontal displacement u:

Q = (EM)(R,A + ILB)Y 1)
B = MN(r:d + 7:B)Y¥ @
H = (Eh/sing)(S:4 + S.B) 3)
My = —(D/a)(Ss4 + 84B) 4)

u = asing[(Si" — cotpS)A + (S’ — cotdS:)B]  (5)

where 4 is the thickness, a the radius, ¢ the meridional angle
measured from the axis of rotation of the shell, E Young’s
modulus, D the bending rigidity of the shell, R; and I, are,
respectively, the real and imaginary parts of the Bessel func-
tion of the first kind ‘of order one, A and B are constants, and
the prime indicates differentiation with respect to ¢.

Here, the following abbreviations have been introduced:

¥ = (@/sing)te ®)

N = [12(1 = »)Jik(a/h) o)
Y= pRi 4+ (1 — o), (8a)
v = ol — (I = PR, (8b)

Si = —[( = 209E;, — 200 — )L (9a)
Sy = —[(1 — 20001 + 2p(1 — )’ ¥ (9b)

Ss = N2{p[(RY) + » cotp(RT)] +
1 — p)V2[(IW)' + v cotdp(T¥)]}  (9¢)
S = NH{p[(IW)' + » cotp(Ii¥)] —

(& — pHV2[(RT) + v cotp(RiF)]] (9d)

where p is the ratio of the applied pressure to the classical
buckling pressure of complete spherical shells, and » is
Poisson’s ratio.

It should be noted that the approximation

V=0 (10)

has been made in the:derivation of the aforementioned expres-
sions.

The influence coefficients are now obtained by prescribing
the inhomogeneous boundary conditions, H = H.and M, =
M ., where the subseript e indicates the values at the edge

Ue = CllHe + 012M¢57 Be = CZlHe + 022M¢6 (11)

The result is identica lto that of Bushnell® and it may be
written in the form

Cu = (asina/Eh)(1/8)(8:'Ss — 85'8; — Av cota)
Cio = (Nt sine/Eh)(1/A)(S:'S: — S2’S1) 12)
Co = (\o? sina/ER)(1/A) (v1Ss — ¥2Ss)
C = (\*/Eha)(1/8) (7182 — 7281
where
A= 88 — 8:8; (13)

Boundary' condition

Qo = M4,, = 0.

Fig. 2




